Diffusive Semiconductor Moment Equations Using Fermi-Dirac Statistics

نویسندگان

  • Ansgar Jüngel
  • Stefan Krause
  • Paola Pietra
  • Jens Markus Melenk
  • Stefan Sauter
  • Matthias Langer
  • Harald Woracek
  • Winfried Auzinger
  • Felix Kramer
  • Markus Aurada
  • Samuel Ferraz-Leite
  • Dirk Praetorius
  • Laurent Desvillettes
  • Céline Prévost
  • Bertram Düring
  • Daniel Matthes
  • Josipa Pina
چکیده

Diffusive moment equations with an arbitrary number of moments are formally derived from the semiconductor Boltzmann equation employing a moment method and a Chapman-Enskog expansion. The moment equations are closed by employing a generalized Fermi-Dirac distribution function obtained from entropy maximization. The current densities allow for a drift-diffusion-type formulation or a “symmetrized” formulation, using dual entropy variables from nonequilibrium thermodynamics. Furthermore, driftdiffusion and new energy-transport equations based on Fermi-Dirac statistics are obtained and their degeneracy limit is studied. Mathematics Subject Classification (2000). 35Q35, 76Y05, 82C35, 82D37.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Diffusion limit of a semiconductor Boltzmann-Poisson system without micro-reversible process

This paper deals with the diffusion approximation of a semiconductor BoltzmannPoisson system. The statistics of collisions we are considering here, is the Fermi-Dirac operator with the Pauli exclusion term and without the detailed balance principle. Our study generalizes, the result of Goudon and Mellet [14], to the multi-dimensional case. keywords: Semiconductor, Boltzmann-Poisson, diffusion a...

متن کامل

Uniform convergence for moment problems with Fermi-Dirac type entropies

We consider the best entropic estimation to a unknown density x, given some of its algebraic or trigonometric moments. A uniform convergence theorem is established in this paper for such problems using Fermi-Dirac type entropic objectives .

متن کامل

A Hierarchy of Diffusive Higher-Order Moment Equations for Semiconductors

A hierarchy of diffusive partial differential equations is derived by a moment method and a Chapman-Enskog expansion from the semiconductor Boltzmann equation assuming dominant collisions. The moment equations are closed by employing the entropy maximization principle of Levermore. The new hierarchy contains the well-known drift-diffusion model, the energy-transport equations, and the six-momen...

متن کامل

Two-Dimensional Numerical Simulation of Fermi- Level Pinning Phenomena Due to DX Centers in AlGaAs/GaAs HEMT’s

Fermi-level pinning phenomena due to DX centers in AlGaAs/GaAs HEMT’s are analyzed using two-dimensional numerical simulation based on a drift-diffusion model. A DX center model is introduced assuming Fermi-Dirac statistics for ionized donor density with the aluminum mole fraction dependence of the deep-donor energy level. The calculated results reveal that the decrease in transconductance of A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009